9.7 Measures of Dispersion

Variation Interval : The interval with the lowest and highest data: $\quad\left[\mathrm{X}_{\text {min }}, \mathrm{X}_{\max }\right]$ Interquartile Interval: The interval $\left[\mathrm{Q}_{1}, \mathrm{Q}_{3}\right]$ 50% of the data lies in this interval

Range (R): The difference between the highest and lowest value. $R=X_{\text {max }}-X_{\text {min }}$
Interquartile Range (I): The difference between Q_{3} and $\mathrm{Q}_{1} \quad \mathrm{I}=\mathrm{Q}_{3}-\mathrm{Q}_{1}$

Note that range and interquartile range refer to single numerical values

Ex 1: A group of 11 friends are playing a game of bowling. Here are their scores
$\begin{array}{lllllllllll}123 & 99 & 139 & 100 & 88 & 86 & 133 & 100 & 153 & 112 & 93\end{array}$
We first need to rearrange the data $\begin{array}{lllllllllll}86 & 88 & 93 & 99 & 100 & 100 & 112 & 123 & 133 & 139 & 153\end{array}$
$\mathrm{n}=\quad \min =\quad \max =$
$\mathrm{Q}_{1}=\quad \mathrm{Q}_{2}=\quad \mathrm{Q}_{3}=$

Variation interval $=$
$R=$

Interquartile interval =
$\mathrm{I}=$
Which score is less than the median but more than Q1?

6999111214141414151517
Girls
991011111112131414151518

Mean

Median
Mode

Range

Practice: page 288 \# 1-4

